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1.  Introduction   

The options market provides rich information on the forward-looking distribution of asset 

returns. Translating security prices into the objective distribution of economic growth, however, 

requires specifying a model or a set of recovery assumptions. While past research has studied tail 

outcomes priced by equity options, the existing methods often require risk neutrality, involved 

estimation techniques, and high-frequency data. These challenges make robust estimation and 

use of disaster probability series difficult.  

We derive a tractable options-pricing model that applies when disaster risk is the 

dominant force and extract disaster probability series with applications in several settings.  The 

model assumes constant relative risk aversion and a power-law form for disaster sizes.  We 

assess within this model the pricing of far-out-of-the-money put options on the overall stock 

market, corresponding empirically to the S&P 500 in the United States and analogous indices for 

other countries.  The simple pricing formula applies when the option is sufficiently far out of the 

money (operationally, a relative exercise price or moneyness of 0.9 or less) and when the 

maturity is not too long (operationally, up to 6 months). 

 In the prescribed region, the elasticity of the put-options price with respect to maturity is 

close to one.  The elasticity with respect to the exercise price is greater than one, roughly 

constant, and depends on the difference between the power-law tail parameter, denoted 𝛼, and 

the coefficient of relative risk aversion, 𝛾.  We show that the theoretical formula conforms with 

data from 1983 to 2018 on far-out-of-the-money put options on the U.S. stock market and 

analogous indices over shorter periods for other countries. 

 The options-pricing formula involves a term that is proportional to the disaster 

probability, 𝑝.  This term depends also on three other parameters:  𝛾, 𝛼, and the threshold 



 3

disaster size, 𝑧଴.  If these three parameters are fixed, we can use estimated time fixed effects to 

gauge the time variations in 𝑝.  The options-pricing formula depends also on potential changes in 

𝑝.  Specifically, sharp increases in 𝑝 can get out-of-the-money put options into the money 

without the realization of a disaster.  We find empirically that the probability, 𝑞, of a large 

upward movement in 𝑝 can be treated as roughly constant. 

Relative to the standard approach in the literature that assumes a risk-neutral distribution, 

our approach starts with the preferences of a representative investor. This preference-based 

approach intuitively connects option pricing with consumption and growth. The two approaches 

are, in fact, similar because our disaster-probability time series is jointly estimated with the 

degree of risk aversion, 𝛾, and the power law parameter, 𝛼. However, even though time 

variations in 𝛾 and 𝛼 cannot be pinned down separately, the unconditional estimates of 𝛾 and 𝛼, 

derived from the estimated elasticity of options price with respect to exercise price, accords with 

estimates from previous estimates using macro variables. 

 This market-based assessment of objective disaster probability provides a valuable 

indicator of tail risks in the aggregate economy. The disaster probability 𝑝 is highly correlated 

across countries and varies significantly over time. We use 𝑝 to forecast growth vulnerabilities – 

defined as GDP growth at the lowest decile. An increase in disaster probability is associated with 

a decline in the conditional mean of growth – downside risks to growth rise with disaster 

probability while upside risks are independent of disaster probability. Moreover, disaster 

probability as registered by the financial markets contains different information about tail risks in 

the economy when compared to political uncertainty. 

2.  Related Literature  
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Our model belongs to the class of jump-diffusion models.  Options pricing within this 

general class goes back to Merton (1976) and Cox and Ross (1976). More recently, empirical 

estimation and validation of jump-diffusion models have been conducted under different 

contexts. Bates (2006) develops a maximum-likelihood methodology for estimating latent affine 

processes. Santa-Clara and Yan (2010) build a linear-quadratic jump-diffusion model and use it 

to separate diffusion and jump processes. Relative to earlier studies, we incorporate rare disaster 

risk in a preference-based model that relates option prices to consumption rare disaster risk and 

delivers a simple closed-form formula that conforms with data. 

A number of papers have examined the variance risk premium and realized volatility. In 

particular, Andersen et al. (2003) build a forecasting model of realized volatility using intraday 

data. Bollerslev, Tauchen, and Zhou (2009) study the predictability of the aggregate stock return 

using variance risk premia. Londono and Xu (2019) study the downside and upside variance risk 

premium and their predictive powers for international stock returns. Relative to these papers, we 

focus on the disaster component of the volatility or variance risk premium. 

The use of far-out-of-the-money put option prices to infer disaster probabilities was 

pioneered by Bates (1991).  This idea has been applied recently by, among others, Bollerslev and 

Todorov (2011a, 2011b); Backus, Chernov, and Martin (2011); Seo and Wachter (2016); Ross 

(2015); and Siriwardane (2015). In particular, Bollerslev and Todorov (2011b) estimate jump 

risk using high-frequency data and find that compensation for rare events accounts for a large 

fraction of average equity and variance risk premia. In contrast, Backus, Chernov, and Martin 

(2011) find that option implied probabilities of rare events are smaller than those estimated from 

macroeconomic data. Seo and Wachter (2016) reconcile the findings by allowing disaster 

probability to be stochastic. Gabaix (2012) explains a number of asset-pricing puzzles including 
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high put options prices with rare disaster risk by applying linearity-generating processes and 

incorporating time-varying disaster sensitivity. Our approach models time-varying disaster 

probability in a tractable formula derived from recursive preferences. One advantage of our 

method is the convenience it provides for estimating disaster probability using low-frequency 

options data. Supplementing the model with a rich data set of international equity index options, 

we also contribute to the literature by providing time series estimates of disaster probabilities for 

a number of countries. 

The application of our estimated disaster probability to forecasting economic growth 

vulnerabilities echoes the work of Adrian, Boyarchenko, and Giannone (2019), which relates the 

conditional distribution of GDP growth to a financial-conditions index. In this study, we show 

that disaster risk, extracted from market prices, is an important component of financial 

conditions and determinants of growth vulnerabilities. 

 Part 3 lays out the rare-disasters framework.  Part 4 works out a formula for pricing of put 

options within the disaster setting.  The analysis starts with a constant probability, 𝑝, of disasters 

and then introduces possibilities for changing 𝑝௧.  Part 5 sets up the empirical framework, 

describes the data and the fit of the model, and discusses the application of the estimated 𝑝௧  to 

forecasting growth vulnerabilities. Part 6 concludes. 

 

3. Rare-Disaster Model and Previous Results 

We use a familiar setup based on rare-macroeconomic disasters, as developed in Rietz 

(1988) and Barro (2006, 2009).  The model is set up for convenience in discrete time.  Real 

GDP, 𝑌, is generated from 

 (1)  𝑙𝑜𝑔ሺ𝑌௧ାଵሻ  ൌ  𝑙𝑜𝑔ሺ𝑌௧ሻ  ൅  𝑔 ൅ 𝑢௧ାଵ ൅  𝑣௧ାଵ, 



 6

where, 𝑔 ൒ 0 is the deterministic part of growth, 𝑢௧ାଵ (the diffusion term) is an i.i.d. normal 

shock with mean 0 and variance 𝜎ଶ, and 𝑣௧ାଵ (the jump term) is a disaster shock.  Disasters arise 

from a Poisson process with probability of occurrence 𝑝 per period.  For now, 𝑝 is taken as 

constant.  A later section allows for time variations in 𝑝, which then play a central role.  When a 

disaster occurs, GDP falls by the fraction 𝑏, where 0 ൏ 𝑏 ൑ 1.  The distribution of disaster sizes 

is time invariant.  (The baseline model includes disasters but not bonanzas.)  This jump-diffusion 

process for GDP is analogous to the one posited for stock prices in Merton (1976, 

equations [1]-[3]).1 

In the underlying Lucas (1978)-tree model, which assumes a closed economy, no 

investment, and no government purchases, consumption, 𝐶௧, equals GDP, 𝑌௧.  The implied 

expected growth rate of 𝐶 and 𝑌 is given, if the period length is short, by 

 (2)  𝑔∗  ൌ  𝑔 ൅  ሺ1/2ሻ ∙  𝜎ଶ – 𝑝 ∙ 𝐸ሾ𝑏ሿ. 

In this and subsequent formulas, we use an equal sign, rather than approximately equal, when the 

equality holds as the period length shrinks to zero. 

 The representative agent has Epstein-Zin/Weil utility,2 as in Barro (2009): 

 (3)  ሾሺ1 െ 𝛾ሻ𝑈௧ሿሺభషഇ
భషം

ሻ ൌ 𝐶௧
ଵିఏ ൅ ቀ ଵ

ଵାఘ
ቁ ∙ ሾሺ1 െ 𝛾ሻ𝐸௧𝑈௧ାଵሿሺభషഇ

భషം
ሻ
, 

where 𝛾 ൐ 0 is the coefficient of relative risk aversion, 𝜃 ൐ 0 is the reciprocal of the 

intertemporal-elasticity-of-substitution (IES) for consumption, and 𝜌 ൐ 0 is the rate of time 

preference.  As shown in Barro (2009) [based on Giovannini and Weil (1989) and Obstfeld 

(1994)], with i.i.d. shocks and a representative agent, the attained utility ends up satisfying the 

form: 

                                                 
1Related jump-diffusion models appear in Cox and Ross (1976). 
2Epstein and Zin (1989) and Weil (1990). 
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 (4)  𝑈௧ ൌ 𝛷 ∙ 𝐶௧
ଵିఊ/ሺ1 െ 𝛾ሻ, 

 
where the constant 𝛷 ൐ 0  depends on the parameters of the model.  Using equations (3) and (4), 

the first-order condition for optimal consumption over time follows from a perturbation 

argument as 

 (5)  ቂ𝐸௧ሺ஼೟శభ

஼೟
ሻଵିఊቃ

ሺംషഇ
ംషభ

ሻ
ൌ ቀ ଵ

ଵାఘ
ቁ ∙ 𝐸௧ ቂሺ஼೟శభ

஼೟
ሻିఊ ∙ 𝑅௧ାଵቃ, 

where 𝑅௧ାଵ is the gross rate of return on any available asset from time 𝑡 to time 𝑡 ൅ 1.  When 

𝛾 ൌ 𝜃—the familiar setting with time-separable power utility—the term on the left-hand side of 

equation (5) equals one. 

 The process for 𝑅 and 𝑌 in equation (1) implies, if the period length is negligible: 

 (6) 𝐸௧ሺ஼೟శభ

஼೟
ሻଵିఊ ൌ 1 ൅ ሺ1 െ 𝛾ሻ𝑔 െ 𝑝 ൅ 𝑝 ∙ 𝐸ሺ1 െ 𝑏ሻଵିఊ ൅ ሺଵ

ଶ
ሻሺ1 െ 𝛾ሻଶ𝜎ଶ. 

This condition can be used along with equation (5) to price various assets, including a risk-free 

bond and an equity claim on a perpetual flow of consumption (that is, the Lucas tree). 

Equations (5) and (6) imply that the constant risk-free real interest rate is given by 

(7)   𝑟௙ ൌ 𝜌 ൅ 𝜃𝑔∗ െ 𝑝 ∙ ቂ𝐸ሺ1 െ 𝑏ሻିఊ െ ቀ
ఊିఏ

ఊିଵ
ቁ 𝐸ሺ1 െ 𝑏ሻଵିఊ െ 𝜃 ∙ 𝐸𝑏 ൅ ቀ

ଵିఏ

ఊିଵ
ቁቃ െ ሺ

ଵ

ଶ
ሻ𝛾ሺ1 ൅ 𝜃ሻ𝜎ଶ . 

Let 𝑃௧ be the price at the start of period 𝑡 of an unlevered equity claim on the Lucas tree.  Let 𝑉௧ 

be the dividend-price ratio; that is, the ratio of 𝑃௧ to 𝐶௧.  In the present model with i.i.d. shocks, 

𝑉௧ equals a constant, 𝑉, so that the growth rate of 𝑃௧ equals the growth rate of 𝐶௧.  The reciprocal 

of 𝑉 equals the dividend-price ratio and can be determined from equations (5) and (6) to be 

(8)     ଵ

௏
ൌ 𝜌 െ ሺ1 െ 𝜃ሻ𝑔∗ ൅ 𝑝 ∙ ቂቀ

ଵିఏ

ఊିଵ
ቁ 𝐸ሺ1 െ 𝑏ሻଵିఊ െ ሺ1 െ 𝜃ሻ ∙ 𝐸𝑏 െ ቀ

ଵିఏ

ఊିଵ
ቁቃ ൅ ሺ

ଵ

ଶ
ሻ𝛾ሺ1 െ 𝜃ሻ𝜎ଶ. 

 The constant expected rate of return on equity, 𝑟௘, is the sum of the dividend yield, 1 𝑉⁄ , 

and the expected rate of capital gain on equity, which equals 𝑔∗, the expected growth rate of the 

dividend (consumption).  Therefore, 𝑟௘  is the same as equation (8) except for the elimination of 
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the term െ𝑔∗.  (The transversality condition, which ensures that the value of tree equity is 

positive and finite, is 𝑟௘ ൐ 𝑔∗.)  The constant equity premium is given from equations (7) and (8) 

by: 

(9)  𝑟௘ െ 𝑟௙ ൌ 𝛾𝜎ଶ ൅ 𝑝 ∙ ሾ𝐸ሺ1 െ 𝑏ሻିఊ െ 𝐸ሺ1 െ 𝑏ሻଵିఊ െ 𝐸𝑏ሿ. 

The disaster or jump term in equation (9) is proportional to the disaster probability, 𝑝.  

The expression in brackets that multiplies 𝑝 depends on the size distribution of disasters, 𝑏, and 

the coefficient of relative risk aversion, 𝛾.  These effects were calibrated in Barro (2006) and 

Barro and Ursúa (2012) by using the long-term history of macroeconomic disasters for 40 

countries to pin down 𝑝 and the distribution of 𝑏.  The results accord with an observed average 

unlevered equity premium of 0.04-0.05 per year if 𝛾 is around 3-4. 

The diffusion term, 𝛾𝜎ଶ, in equation (9) is analogous to the expression for the equity 

premium in Mehra and Prescott (1985) and is negligible compared to the observed average 

equity premium if 𝛾 and 𝜎ଶ take on empirically reasonable values.  For many purposes—

including the pricing of far-out-of-the-money stock options—this term can be ignored. 

 

4. Pricing Stock Options 

We now discuss the pricing of stock options within our model, which fits into the class of 

jump-diffusion models. There is a long-standing literature on options-pricing models with jump 

risk. Our preference-based approach excels in its simplicity and ability to connect market prices 

to macroeconomic variables. The approach is also useful to assess state prices under the physical 

measure, separating the risk premium from objective expectations of outcomes. The merits of the 

preference approach come at a cost of requiring assumptions on preferences. For instance, our 

model assumes a time-invariant constant-relative-risk-aversion utility function.  
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We first consider the case in which the representative agent perceives the probability of 

disaster to be constant. This baseline framework is presented in sections 4.1- 4.4 below.  Under 

this counterfactual scenario, the time-variations in option prices can only be generated if the 

agent reprices options in each period with a new probability and assumes that the new 

probability would hold indefinitely. This type of assumption has been used in the literature, for 

instance, in Weitzman (2007), Bakshi and Skoulakis (2010) and Cogley and Sargent (2008). 

However, as options traders do anticipate changes in the probability of disaster, our baseline 

model generates options prices that are lower than traded options prices, or alternatively, the 

disaster probability implied from traded options using the baseline model is upward-biased. To 

correct for this mis-specification, we introduce, in section 4.6 an assumption on the process that 

generates changes in disaster probability. This framework allows for a time-fixed-effects 

procedure to back out a time series for disaster probability. 

4.1.  Setup for pricing options 

We derive a pricing solution for far-out-of-the-money put options under the assumption 

that disaster events (jumps) are the dominant force.  Key underlying conditions for the validity of 

the solution are that the option be sufficiently far out of the money and that the maturity is not 

too long.  Under these conditions, we derive a simple pricing formula that reflects the underlying 

Poisson nature of disaster events, combined with an assumed power-law distribution for the sizes 

of disasters.  This formula generates testable hypotheses—which we subsequently test—on the 

relation of the put-options price to maturity and exercise price. Furthermore, the linearity of the 

formula in disaster probability and the constant density function characterizing disaster size 

allow the identification of the physical probability of disaster. 
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Consider a put option on equity in the Lucas tree.  To begin, suppose that the option has a 

maturity of one period and can be exercised only at the end of the period (a European option).  

The exercise price or strike on the put option is 

 (10)   𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 𝑝𝑟𝑖𝑐𝑒 ൌ 𝜀 ∙ 𝑃௧, 

where we assume in the main analysis that 0 ൏ 𝜀 ൑ 1.  We refer to 𝜀, the ratio of the exercise 

price to the stock price, as the relative exercise price (often described as “moneyness”). 

The payoff on the put option at the start of period 𝑡 ൅ 1 is zero if 𝑃௧ାଵ ൒ 𝜀 ∙ 𝑃௧.   If 

𝑃௧ାଵ ൏ 𝜀 ∙ 𝑃௧, the payoff is 𝜀𝑃௧ െ 𝑃௧ାଵ.  If  𝜀 ൏ 1, the put option is initially out of the money.  

We focus empirically on options that are sufficiently far out of the money (𝜀 sufficiently below 

one) so that the diffusion term, 𝑢, in equation (1) has a negligible effect on the chance of getting 

into the money over one period.  The value of the put option then hinges on the disaster term, 𝑣.  

Specifically, the value of the put option depends on the probability, 𝑝, of experiencing a disaster 

and the distribution of disaster sizes, 𝑏.  Further, what will mostly matter is the likelihood of 

experiencing one disaster.  As long as the period (the maturity of the option) is not too long, the 

chance of two or more disasters has a second-order pricing impact that can be ignored as a good 

approximation.3 

 As the diffusion term is negligible for options that are sufficiently far out of the money, 

the change in the stock price, 𝑃௧ାଵ/𝑃௧, reflects a disaster shock that varies in size. In a later 

section, we also consider time-varying disaster probability as a driver of stock-price change. In 

this context, the dividend-price ratio in equation (8) is constant.  

                                                 
3Similarly, if we allowed for possible bonanzas, we could neglect the chance of a disaster and a bonanza both 
occurring over the period. 
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Let the price of the put option at the start of period 𝑡 be 𝛺 ∙ 𝑃௧.  We refer to 𝛺, the ratio of 

the options price to the stock price, as the relative options price.  The gross rate of return, 𝑅௧ାଵ
௢ , 

on the put option is given by 

(11) 𝑅௧ାଵ
௢ ൌ ቐ

0   if   ௉೟శభ

௉೟
൒ 𝜀

ଵ

ఆ
∙ ቀ𝜀 െ ௉೟శభ

௉೟
ቁ    if   ௉೟శభ

௉೟
൏ 𝜀

. 

 If there is one disaster of size 𝑏, the put option is in the money at the start of period 𝑡 ൅ 1 

if  
௉೟శభ

௉೟
ൌ ሺ1 ൅ 𝑔ሻ ∙ ሺ1 െ 𝑏ሻ ൏ 𝜀 . We work with the transformed variable 𝑧 ≡ 1/ሺ1 െ 𝑏ሻ, which 

corresponds to the ratio of normal to disaster consumption.  The condition 0 ൏ 𝑏 ൑ 1 translates 

into 𝑧 ൐ 1, with 𝑧 tending to infinity as 𝑏 tends to 1.  When expressed in terms of 𝑧, the gross 

rate of return on the put option is modified from equation (11) to: 

 (12) 𝑅௧ାଵ
௢  ൌ   ቊ

ଵ

ఆ
∙ ቀ𝜀 െ ଵା௚

௭
ቁ if 1 disaster occurs and 𝑧 ൐ ሺ1 ൅ 𝑔ሻ/𝜀

0 otherwise
. 

To determine 𝛺, we use the first-order condition from equation (5), with 𝑅௧ାଵ given by 

𝑅௧ାଵ
௢  from equation (12).  The results depend on the form of the distribution for 𝑧, to which we 

now turn. 

4.2. Power-law distribution of disaster sizes 

Based on the findings for the distribution of observed macroeconomic disaster sizes in 

Barro and Jin (2011), we assume that the density function for 𝑧 conforms to a power law:4 

 (13)  𝑓ሺ𝑧ሻ ൌ 𝐴𝑧ିሺଵାఈሻ, 𝑤ℎ𝑒𝑟𝑒 𝐴 ൐ 0, 𝛼 ൐ 0, 𝑎𝑛𝑑 𝑧 ൒ 𝑧଴ ൐ 1 . 

                                                 
4In Kou (2002, p. 1090), a power-law distribution is ruled out because the expectation of next period’s asset price is 
infinite.  This property applies because Kou allows for favorable jumps (bonanzas) and, more importantly, he 
assumes that the power-law shock enters directly into the log of the stock price.  This problem does not arise in our 
context because we consider disasters and not bonanzas, and, more basically, because our power-law shock 
multiplies the level of GDP (and consumption and the stock price), rather than adding to the log of GDP. 
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This type of power law was applied by Pareto (1897) to the distribution of high incomes.  The 

power-law distribution has since been used widely in physics, economics, computer science, and 

other fields.  For surveys, see Mitzenmacher (2003) and Gabaix (2009), who discusses 

underlying growth forces that can generate power laws.  Examples of applications include sizes 

of cities [Gabaix and Ioannides (2004)], stock-market activity [Gabaix, et al. (2003) and Plerou, 

et al. (2004)], CEO compensation [Gabaix and Landier (2008)], and firm size [Luttmer (2007)].  

The power-law distribution has been given many names, including heavy-tail distribution, Pareto 

distribution, Zipfian distribution, and fractal distribution. 

The parameter 𝑧଴ ൐ 1 in equation (13) is the threshold beyond which the power-law 

density applies.  For example, in Barro and Ursúa (2012), the floor disaster size of 𝑏଴ ൌ 0.095 

corresponds to 𝑧଴ ൌ 1.105.  We treat z0 as a constant.  The condition that 𝑓ሺ𝑧ሻ integrates to one 

from 𝑧଴ to infinity implies 𝐴 ൌ 𝛼𝑧଴
ఈ.  Therefore, the power-law density function in equation (13) 

becomes 

 (14)  𝑓ሺ𝑧ሻ ൌ 𝛼𝑧଴
ఈ ∙ 𝑧ିሺଵାఈሻ, 𝑧 ൒ 𝑧଴ ൐ 1 . 

The key parameter in the power-law distribution is the Pareto tail exponent, 𝛼, which governs the 

thickness of the right tail.  A smaller 𝛼 implies a thicker tail. 

The probability of drawing a transformed disaster size above 𝑧 is given by 

 (15)   1 െ 𝐹ሺ𝑧ሻ ൌ ሺ ௭

௭బ
ሻିఈ. 

Thus, the probability of seeing an extremely large transformed disaster size, 𝑧 (expressed as a 

ratio to the threshold, 𝑧଴), declines with 𝑧 in accordance with the tail exponent 𝛼 ൐ 0. 

 One issue about the power-law density is that some moments related to the transformed 

disaster size, 𝑧, might be unbounded.  For example, in equation (7), the risk-free rate depends 

inversely on the term 𝐸ሺ1 െ 𝑏ሻିఊ.  Heuristically (or exactly with time-separable power utility), 
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we can think of this term as representing the expected marginal utility of consumption in a 

disaster state relative to that in a normal state.  When 𝑧 ≡ 1/ሺ1 െ 𝑏ሻ is distributed according to 

𝑓ሺ𝑧ሻ from equation (14), we can compute 

 (16)  𝐸ሺ1 െ 𝑏ሻିఊ ൌ 𝐸ሺ𝑧ఊሻ ൌ ቀ ఈ

ఈିఊ
ቁ ∙ 𝑧଴

ఊ if α ൐ γ.   

The term on the right side of equation (15) is larger when 𝛾 is larger (more risk aversion) 

or 𝛼 is smaller (fatter tail for disasters).  But, if 𝛼 ൑ 𝛾, the tail is fat enough, relative to the 

degree of risk aversion, so that the term blows up.  In this case, 𝑟௙equals minus infinity in 

equation (7), and the equity premium is infinity in equation (9).  Of course, in the data, the risk-

free rate is not minus infinity and the equity premium is not infinity.  Therefore, the empirical 

application of the power-law density in Barro and Jin (2011) confined 𝛾 to a range that avoided 

unbounded outcomes, given the value of 𝛼 estimated from the observed distribution of disaster 

sizes.  That is, the unknown 𝛾 had to satisfy 𝛾 ൏ 𝛼 in order for the model to have any chance to 

accord with observed average rates of return.5  This condition, which we assume holds, enters 

into our analysis of far-out-of-the-money put-options prices. 

Barro and Jin (2011, Table 1) estimated the power-law tail parameter, 𝛼, in single power-

law specifications (and also considered double power laws).  The estimation was based on 

macroeconomic disaster events of size 10% or more computed from the long history for many 

countries of per capita personal consumer expenditure (the available proxy for consumption, 𝐶) 

and per capita GDP, 𝑌.  The estimated values of 𝛼 in the single power laws were 6.3, with a 95% 

                                                 
5With constant absolute risk aversion and a power-law distribution of disaster sizes, the relevant term has to blow 
up.  The natural complement to constant absolute risk aversion is an exponential distribution of disaster sizes.  In 
this case, the relevant term is bounded if the parameter in the exponential distribution is larger than the coefficient of 
absolute risk aversion.  With an exponential size distribution and constant relative risk aversion, the relevant term is 
always finite. 
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confidence interval of (5.0, 8.1), for 𝐶 and 6.9, with a 95% confidence interval of (5.6, 8.5), 

for 𝑌.6  Thus, the observed macroeconomic disaster sizes suggest a range for 𝛼 of roughly 5-8. 

4.3. Options-pricing formula 

 To get the formula for 𝛺, the relative options price, we use the first-order condition from 

equations (5) and (6), with the gross rate of return, 𝑅௧ାଵ, corresponding to the return 𝑅௧ାଵ
௢  on put 

options in equation (12).  We can rewrite this first-order condition as 

 (17)  1 ൅ 𝜌ො ൌ ሺ1 ൅ 𝑔ሻିఊ ∙ 𝐸௧ሺ𝑧ఊ𝑅௧ାଵ
௢ ሻ, 

where 𝑧 ≡ 1/ሺ1 െ 𝑏ሻ is the transformed disaster size and  1 ൅ 𝜌ො is an overall discount term, 

given from equations (5) and (6) (when the diffusion term is negligible) by 

 (18)  1 ൅ 𝜌ො ൌ 1 ൅ 𝜌 െ ሺ𝛾 െ 𝜃ሻ𝑔 ൅ 𝑝 ∙ ቀఊିఏ

ఊିଵ
ቁ ∙ ሾ𝐸ሺ1 െ 𝑏ሻଵିఊ െ 1ሿ . 

 We can evaluate the right-hand side of equation (17) using the density 𝑓ሺ𝑧ሻ from 

equation (14) along with the expression for 𝑅௧ାଵ
௢  from equation (12).  The result involves 

integration over the interval 𝑧 ൒ ሺ1 ൅ 𝑔ሻ/𝜀 where, conditional on having one disaster, the 

disaster size is large enough to get the put option into the money.  The formula depends also on 

the probability, 𝑝, of having a disaster.  Specifically, we have: 

(19)  ሺ1 ൅ 𝜌ොሻሺ1 ൅ 𝑔ሻఊ ൌ ௣

ఆ
∙ ׬ ቄ𝑧ఊ ∙ ቂ𝜀 െ ଵା௚

௭
ቃ ∙ 𝛼𝑧଴

ఈ𝑧ିሺଵାఈሻቅ 𝑑𝑧
ஶ

ሺభశ೒
ഄ

ሻ  . 

Evaluating the integral7 (assuming 𝛾 ൏ 𝛼 and 𝜀 ൏ ሾ1 ൅ 𝑔ሿ/𝑧଴) leads to a closed-form formula 

for the relative options price: 

 (20)   𝛺 ൌ ఈ௭బ
ഀ

ሺଵାఘෝାఈ௚ሻ
∙ ௣ఌభశഀషം

ሺఈିఊሻሺଵାఈିఊሻ
 . 

                                                 
6Barro and Jin (2011, Table 1) found that the data could be fit better with a double power law.  In these 
specifications, with a threshold of 𝑧଴ ൌ 1.105, the tail parameter, 𝛼, was smaller in the part of the distribution with 
the largest disasters than in the part with the smaller disasters.  The cutoff value for the two parts was at a value of 𝑧 
around 1.4. 
7 We also used the approximation ሺ1 ൅ 𝜌ොሻሺ1 ൅ 𝑔ሻఈ ൎ 1 ൅ 𝜌ො ൅ 𝛼𝑔. 
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4.4. Maturity of the option 

 Equation (20) applies when the maturity of the put option is one “period.”  We now take 

account of the maturity of the option.  In continuous time, the parameter 𝑝, measured per year, is 

the Poisson hazard rate for the occurrence of a disaster.  Let 𝑇, in years, be the maturity of the 

(European) put option.  The density, ℎ, for the number of hits (disasters) over 𝑇 is given by8 

 (21)    ℎሺ0ሻ ൌ 𝑒ି௣், 
     ℎሺ1ሻ ൌ 𝑝𝑇𝑒ି௣், 
     … 

     ℎሺ𝑥ሻ ൌ ሺ௣்ሻೣ௘ష೛೅

௫!
, 𝑥 ൌ 0,1, …  

 If 𝑝𝑇 is much less than 1, the contribution to the options price from two or more disasters 

will be second-order, relative to that from one disaster.  For given 𝑝, this condition requires 

consideration of maturities, 𝑇, that are not “too long.”  In this range, we can proceed as in our 

previous analysis to consider just the probability and size of one disaster.  Then, in equation 

(20), 𝑝 will be replaced as a good approximation by 𝑝𝑇. 

The discount rate, 𝜌ො, and growth rate, 𝑔, in equation (20) will be replaced 

(approximately) by  𝜌ො𝑇 and 𝑔𝑇.  For given 𝜌ො and 𝑔, if 𝑇 is not “too long,” we can neglect these 

discounting and growth terms.  The impacts of these terms are of the same order as the effect 

from two or more disasters, which we have already neglected. 

When 𝑇 is short enough to neglect multiple disasters and the discounting and growth 

terms,9 the formula for the relative options price simplifies from equation (20) to 

                                                 
8See Hogg and Craig (1965, p. 88). 
9 The possibility of two disasters turns out to introduce into equation (22) the multiplicative term: 

1 ൅ pT ∙ ቊെ1 ൅ 0.5 ∙ ቈ
ఈ௭బ

ഀሾଵାଶሺఈିఊሻାሺఈିఊሻሺଵାఈିఊሻሾ୪୭୥ቀ
భ
ഄቁିଶ୪୭୥ ሺ௭బሻሿ

ሺఈିఊሻሺଵାఈିఊሻ
቉ቋ , assuming  

ଵ

ఌ
൐ 𝑧଴

ଶ, so that two disasters just at the 

threshold size are not sufficient to get the option into the money.  The full term inside the large brackets has to be 
positive, so that this multiplicative term is increasing in 𝑇.  The effects from the discount rate and growth rate add 
multiplicative terms that look like ሺ1 െ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∙ 𝑟𝑇) and ሺ1-𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∙ 𝑔𝑇ሻ.  Hence, these 
multiplicative terms are decreasing in 𝑇.  The overall effect of 𝑇 implied by the combination of the three 
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(22)   𝛺 ൌ ఈ௭బ
ഀ∙௣்∙ఌభశഀషം

ሺఈିఊሻሺଵାఈିఊሻ
 . 

Here are some properties of the options-pricing formula: 

 The formula for 𝛺, the ratio of the options price to the stock price, is well-defined if 𝛼 ൐

𝛾, the condition noted before that ensures the finiteness of various rates of return. 

 The exponent on maturity, 𝑇, equals 1. 

 The exponent on the relative exercise price, 𝜀, equals 1 ൅ 𝛼-𝛾, which is constant and 

greater than 1 because 𝛼 ൐ 𝛾.  We noted before that 𝛼 ranged empirically between 5 

and 8.  The corresponding range for 𝛾 (needed to replicate an average unlevered equity 

premium of 0.04-0.05 per year) is between 2.5 and 5.5, with lower 𝛾 associating with 

lower 𝛼.  The implied range for 𝛼-𝛾 (taking account of the association between 𝛾 and 𝛼) 

is between 2.5 and 4.5, implying a range for the exponent on 𝜀 between 3.5 and 5.5.  

 For given 𝑇 and 𝜀, 𝛺 depends on the disaster probability, 𝑝; the shape of the power-law 

density, as defined by the tail coefficient, 𝛼, and the threshold, 𝑧଴; and the coefficient of 

relative risk aversion, 𝛾.  The expression for 𝛺 is proportional to 𝑝. 

 For given 𝑝 and 𝛾, 𝛺 rises with a once-and-for-all shift toward larger disaster sizes; that 

is, with a reduction in the tail coefficient, 𝛼, or an increase in the threshold, 𝑧଴. 

 For given 𝑝, 𝛼, and 𝑧଴, 𝛺 rises for sure with a once-and-for-all increase in 𝛾 if 𝜀 ൑ 1, 

which is the range that we are considering for put options.  Note that, in contrast, the 

Black-Scholes options-pricing formula implies that 𝛺 is independent of 𝛾.10 

 

                                                 
multiplicative terms is unclear.  That is, it is unclear how the full result for 𝛺 would deviate from unit elasticity with 
respect to 𝑇. 
10See, for example, Hull (2000, pp. 248 ff.).  However, this standard result depends on holding fixed the risk-free 
rate, 𝑟௙.  Equation (7) shows that  𝑟௙ depends negatively on 𝛾. 
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We can look at the results in terms of a measure of “risk-neutral probability,” 𝑝௡, which 

we define as the value of 𝑝 that generates a specified relative options price, 𝛺, when 𝛾 ൌ 0. This 

version of “risk-neutral probability” relates to the usual approach, which multiplies 𝑝 by the 

marginal utility of consumption in a disaster state relative to that in a normal state. Since our 

model allows for disasters to differ in severity according to the power-law distribution, there are 

multiple disaster states. The expression for 𝑝௡ is calculated assuming that the disaster-size 

distribution remains as specified under the physical measure. Therefore, we obtain the risk-

neutral probability of a disaster occurrence when maintaining the relative frequency of disaster 

severity that corresponds empirically to the macroeconomic estimates. The formula for the ratio 

of the risk-neutral to the objective probability, 𝑝௡ 𝑝⁄ , implied by equation (22) is 

 (23)    
௣೙

௣
ൌ ఈሺଵାఈሻ

ሺఈିఊሻሺଵାఈିఊሻ
∙ 𝜀ିఊ . 

Note that 𝑝௡ 𝑝⁄  depends on the relative exercise price, 𝜀, but not the maturity, 𝑇. Thus, the 

compensation for risk differs for options of varying moneyness. If we assume parameter values 

consistent with the previous discussion—for example, 𝛼 ൌ 7 and 𝛾 ൌ 3.5—the implied 𝑝௡ 𝑝⁄  is 

5.1 when 𝜀 ൌ 0.9, 7.8 when 𝜀 ൌ 0.8, 12.4 when 𝜀 ൌ 0.7, 21.3 when 𝜀 ൌ 0.6, and 40.3 when 

𝜀 ൌ  0.5.  Hence, the relative risk-neutral probability associated with far-out-of-the-money put 

options is sharply above one. 

 To view it another way, the relative options price, 𝛺, may seem far too high at low 𝜀, 

when assessed in terms of the (risk-neutral) probability needed to justify this price.  Thus, people 

who are paying these prices to insure against the risk of an enormous disaster may appear to be 

irrational.  In contrast, the people writing these far-out-of-the-money puts may seem to be getting 

free money by insuring against something that is virtually impossible.  Yet the pricing is 

reasonable if people have roughly constant relative risk aversion with 𝛾 of 3-4 (assuming a tail 
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parameter, 𝛼, for disaster size around 7).  The writers of these options will have a comfortable 

income almost all the time, but will suffer tremendously during the largest rare disasters, when 

the marginal utility of consumption is extremely high. 

4.5. Diffusion term 

The formula for 𝛺, the relative options price, in equation (22) neglects the diffusion term, 

𝑢, in the process for GDP (and consumption and the stock price) in equation (1).  This omission 

is satisfactory if the put option is sufficiently far out of the money so that, given a reasonable 

variance 𝜎ଶ of the diffusion term, the chance that the diffusion shock on its own gets  the option 

into the money over the maturity 𝑇 is negligible.  In other words, the tail for the normal process 

is not fat enough to account by itself for, say, 10% or greater declines in stock prices over 

periods of a few months.  Operationally, our main empirical analysis applies to options that are at 

least 10% out of the money (𝜀 ൑ 0.9) and to maturities, 𝑇, that range up to 6 months. 

If we consider put options at or close to the money, the diffusion term would have a first-

order impact on the value of the option.  If we neglect the disaster (jump) term—which will be 

satisfactory here—we would be in the standard Black-Scholes world.  In this setting (with i.i.d. 

shocks), a key property of the normal distribution is that the variance of the stock price over 

interval 𝑇 is proportional to 𝑇, so that the standard deviation is proportional to the square root 

of 𝑇.  This property led to the result in Brenner and Subrahmanyam (1988) that the value of an 

at-the-money put option is proportional to the square root of the maturity. 

We, therefore, have two theoretical results concerning the impact of maturity, 𝑇, on the 

relative options price, 𝛺.  For put options far out of the money (operationally for 𝜀 ൑ 0.9), the 

exponent on 𝑇 is close to 1.  For put options close to the money (operationally for 𝜀 ൌ 1), the 

exponent on 𝑇 is close to one-half. 
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4.6. Time-varying disaster probability 

 The asset-pricing formula in equation (22) was derived under the assumption that the 

disaster probability, 𝑝, and the size distribution of disasters (determined by 𝛼 and 𝑧଴) were 

fixed.11  However, these assumptions about the disaster process turn out to be counter-factual.  In 

this section, we assume that the disaster probability 𝑝 is itself governed by a Poisson process. 

Specifically, unusual and sharp increases in 𝑝 resemble disasters. This specification turns out to 

work well empirically. The goal of this section is to enhance the model to incorporate the time-

variation in 𝑝 and, thereby, correct the misspecification error that results from constraining p to 

be constant.  

We focus here on shifting 𝑝, but the results are isomorphic to shifting disaster distribution 

(reflecting changes in 𝛼 and 𝑧଴). The assumptions of a constant relative risk-aversion coefficient, 

𝛾, and a constant disaster-size distribution, governed by 𝑧଴ and 𝛼, allow us identify 𝑝௧ from the 

data and interpret 𝑝௧ as the time varying physical probability of disaster.  

We can rewrite equation (22) as 

 (24)    Ω ൌ 𝜂ଵpT𝜀ଵାఈିఊ, 

where 𝜂ଵ ൌ ఈ௭బ
ഀ

ሺఈିఊሻሺଵାఈିఊሻ
 is a constant.  We can estimate equation (24) with data on 𝛺 for far-out-

of-the-money put options on, say, the S&P 500.  Given ranges of maturities, 𝑇, and relative 

exercise prices, 𝜀, we can estimate elasticities of 𝛺 with respect to 𝑇 and 𝜀.  We can also test the 

hypothesis that 𝜂ଵ𝑝 is constant.  Using month-end data on put options for several stock-market 

indices, we estimated monthly fixed effects and tested the hypothesis that these fixed effects 

were all equal for each stock-market index.  The results, detailed in a later section, strongly reject 

                                                 
11We also assumed that preference parameters, including the coefficient of relative risk aversion, 𝛾, are fixed. 
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the hypothesis that 𝜂ଵ𝑝 is constant.  Instead, the estimated monthly fixed effects fluctuate 

dramatically, including occasional sharp upward movements followed by gradual reversion over 

several months toward a small baseline value.  From the perspective of the model, if we assume 

that 𝛼, 𝛾, and 𝑧଴ are fixed, so that 𝜂ଵ is constant, these shifts reflect variations in the disaster 

probability, 𝑝. 

 If 𝛾 ൐ 1, as we assume, equation (8) implies that a once-and-for-all rise in disaster 

probability, 𝑝, lowers the price-dividend ratio, 𝑉, if 𝜃 ൏ 1 (meaning that the intertemporal 

elasticity of substitution, 1/𝜃, exceeds 1).12  Bansal and Yaron (2004) focus on 𝐼𝐸𝑆 ൐ 1 because 

it corresponds to the “normal case” where an increase in the expected growth rate, 𝑔∗, raises 𝑉.  

Barro (2009) argues that 𝐼𝐸𝑆 ൐ 1 is reasonable empirically and, therefore, also focuses on this 

case. 

 Generally, the effects on options pricing depend on 𝜃 and other parameters and also on 

the stochastic process that generates variations in 𝑝, including the persistence of these changes.  

However, for purposes of pricing stock options, we need only consider the volatility of the 

overall term, 𝜂ଵ𝑝, which appears on the right side of equation (24).  Our first-round look at the 

data—that is, the estimated monthly fixed effects—suggested that this term looks like a disaster 

process.  On rare occasions, this term shifts sharply and temporarily upward and leads, thereby, 

to a jump in the corresponding term in equation (24).  We think of this shock as generated by 

another Poisson probability, 𝑞, with a size distribution (for changes in stock prices) involving 

another power-law distribution, in this case with tail parameter 𝛼∗ ൐ 𝛾. If this process for 

changing 𝑝 is independent of the disaster realizations (which depend on the level of 𝑝), then 

equation (22) is modified to 

                                                 
12Under the same conditions, a fall in 𝛼 or a rise in 𝜎ଶ reduces 𝑉. 
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(25)   𝛺 ൌ ఈ௭బ
ഀ∙௣೟்∙ఌభశഀషം

ሺఈିఊሻሺଵାఈିఊሻ
൅ ఈ∗ሺ ௭బ

∗ሻഀ∗∙௤்∙ఌభశഀ∗షം

ሺఈ∗ିఊሻሺଵାఈ∗ିఊሻ
 . 

The first term on the right side of equation (25) reflects put-option value associated with the 

potential for realized disasters, and the second term gauges value associated with changing 𝑝௧ 

and the effects of these changes on stock prices.13  The logic of the second term differs from the 

first term, in that the first term reflects the fall in consumption in a disaster whereas the second 

term reflects changes in the distribution of future payoffs.  The inclusion of 𝑝௧ in the first term is 

an approximation that neglects the tendency for 𝑝௧ to revert over time toward a small baseline 

value.  This approximation for options with relatively short maturity is similar to others already 

made, such as the neglect of multiple disasters and the ignoring of discounting and expected 

growth. 

We can rewrite the formula in equation (25) as 

 (26)   Ω ൌ T𝜀ଵାఈିఊ ∙ ሾ𝜂ଵ𝑝௧ ൅ 𝜂ଶ𝑞𝜀ሺఈ∗ିఈሻሿ, 
where  

 (27)  𝜂ଵ ൌ ఈ௭బ
ഀ

ሺఈିఊሻሺଵାఈିఊሻ
 , 𝜂ଶ ൌ ఈ∗ሺ ௭బ

∗ሻഀ∗

ሺఈ∗ିఊሻሺଵାఈ∗ିఊሻ
 

are constants.14  The new term involving 𝜂ଶ ൐ 0 turns out to be important for fitting the data on 

put-options prices.  Notably, this term implies 𝛺 ൐ 0 if 𝑝௧ ൌ 0 because of the possibility that 𝑝௧ 

will rise during the life of the option.  The preclusion of changing 𝑝௧ (corresponding to 𝜂ଶ ൌ 0 ) 

leads, as emphasized by Seo and Wachter (2016), to overestimation of the average level of 𝑝௧ in 

the sample.15  In addition, our hypotheses about elasticities of Ω with respect to 𝑇 and 𝜀 in 

equation (26) turn out to accord better with the data when 𝜂ଶ ൐ 0  is admitted. 

 

                                                 
13The formulation would also encompass effects on stock prices from changing 𝛼 or 𝛾. 
14These values are constant if 𝛼, 𝛼∗, 𝑧଴, (𝑧଴)*, 𝛾, and 𝑞 are all constant.  𝛼∗ െ 𝛼  is identified in our estimation 
because we have sample variation in relative exercise prices, 𝜀. 
15As Seo and Wachter (2016) note, these problems appear, for example, in Backus, Chernov, and Martin (2011). 
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5.  Empirical Analysis 

The model summarized by equation (26) delivers testable predictions.  First, the elasticity 

of the put-options price with respect to maturity, 𝑇—denoted 𝛽்—is close to one.  Second, for a 

given value of 𝜂ଶ𝑞𝜀ሺఈ∗ିఈሻ, the elasticity of the put-options price with respect to the relative 

exercise price, 𝜀—denoted 𝛽ఌ—is greater than one and corresponds to 1 ൅ 𝛼 െ 𝛾.  Given a value 

of 𝛾 and the estimated value of 𝛼∗ െ 𝛼 from equation (26), the results can be used to back out 

estimates of the tail parameters 𝛼 and 𝛼∗.  Finally, the monthly fixed effects provide estimates of 

each period’s disaster probability, 𝑝௧ (or, more precisely, of 𝑝௧ multiplied by the positive 

constant 𝜂ଵ).  We assess these hypotheses empirically by analyzing prices of far-out-of-the-

money put options on the U.S. S&P 500 and analogous broad stock-market indices for other 

countries. 

Following the estimation of the model and hypothesis testing, we discuss applications of 

the estimated 𝑝௧ to forecasting economic growth. This section concludes with robustness tests, 

including estimations using alternative data sources. 

5.1. Data  

Our analysis relies on two types of data—indicative prices on over-the-counter (OTC) 

contracts offered to clients by a large financial firm and U.S. market data provided by Berkeley 

Options Data Base and OptionMetrics.  The Berkeley data allow us to extend the U.S. analysis 

back to 1983, thereby bringing out the key role of the stock-market crash of October 1987.  The 

OptionMetrics information allows us to check whether the results using U.S. OTC data differ 

from those using market data.  We find that the main results are similar with the two types of 

data. 
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Our primary data source is a broker-dealer with a sizable market-making operation in 

global equities.  We utilize over-the-counter (OTC) options prices for seven equity-market 

indices—S&P 500 (U.S.), FTSE (U.K.), DAX (Germany), ESTX50 (Eurozone), Nikkei (Japan), 

OMX (Sweden), and SMI (Switzerland).  The OTC data derive from implied-volatility surfaces 

generated by the broker-dealer for the purpose of analysis, pricing, and marking-to-market.16  

These surfaces are constructed from transaction prices of options and OTC derivative contracts.17  

The dealer interpolates these observed values to obtain implied volatilities for strikes ranging 

from 50% to 150% of spot and for a range of maturities from 15 days to 2 years and more.   Even 

at very low strikes, for which the associated options seldom trade, the estimated implied 

volatilities need to be accurate for the correct pricing of OTC derivatives such as variance swaps 

and structured retail products.  Institutional-specific factors are unlikely to influence pricing in a 

significant way because other market participants can profitably pick off pricing discrepancies 

among dealers.  Therefore, dealers have strong incentives to maintain the accuracy of their 

implied-volatility surfaces. 

Using the data on implied volatilities, we re-construct options prices from the standard 

Black-Scholes formula, assuming a zero-discount rate and no dividend payouts. The adjustment 

in option prices due to zero discount rate and dividend is not large in practice and allows a closer 

comparison of the model and the data.  We should emphasize that this use of the Black-Scholes 

formula to translate implied volatilities into options prices does not bind us to the Black-Scholes 

model of options prices.  The formula is used only to convert the available data expressed as 

                                                 
16A common practice in OTC trading is for executable quotes to be given in terms of implied volatility instead of the 
price of an option.  Once the implied volatility is set, the options price is determined from the Black-Scholes formula 
based on the observable price of the underlying security.  Since the Black-Scholes formula provides a one-to-one 
mapping between price and implied volatility, quotes can be given equivalently in terms of implied volatility or 
price. 
17Dealers observe prices through own trades and from indications by inter-dealer brokers.   It is also a common 
practice for dealers to ask clients how their prices compare to other market makers in OTC transactions. 
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implied volatilities into options prices.  Our calculated options prices are comparable to directly 

quoted prices (subject to approximations related to discounting and dividend payouts). 

We sample the data at a monthly frequency, selecting only month-end dates, to allow for 

ease of computation with a non-linear solver.  The selection of mid-month dates yields similar 

results.  The sample period for the United States in our main analysis is August 1994-June 2018.  

Because of lesser data availability, the samples for the other stock-market indices are shorter.  

Subsequently, we expand the U.S. sample back to 1983, particularly to assess pricing behavior 

before and after the global stock-market crash of 1987.  However, we do not use this longer 

sample in our main analysis because the data quality before 1994 is substantially poorer. 

The OTC data source is superior to market-based alternatives in the breadth of coverage 

for exercise prices and maturities.  Notably, the market data tend to be less available for options 

that are far out of the money and for long maturities.  The broad range of strikes in the broker-

dealer data is important for our analysis because it is the prices of far-out-of-the-money put 

options that will mainly reflect disaster risk.  In practice, we use put options with exercise prices 

of 50%, 60%, 70%, 80%, and 90% of spot; that is, we exclude options within 10% of spot. For 

maturities, we focus on the range of 30 days, 60 days, 90 days, and 180 days.18   

Our main analysis excludes options with maturities greater than six months because the 

prices in this range may be influenced significantly by the possibility of multiple disaster 

realizations and also by discounting and expected growth.  However, in practice, the results for 

one-year maturity accord reasonably well with those for shorter maturities. 

                                                 
18We omit 15-day options because we think measurement error is particularly serious in this region in pinning down 
the precise maturity.  Even the VIX index, which measures short-dated implied volatility, does not track options 
with maturity less than 23 days. 
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Our extended analysis to the period June 1983 to July 1994 uses market-based quotes on 

S&P 100 index options from the Berkeley Options Data Base.19  These data derive from CBOE's 

Market Data Retrieval tapes.  Because of the limited number of quotes on out-of-the-money 

options in this database, we form our monthly panel by aggregating quotes from the last five 

trading days of each month.  The available Berkeley data allow us to consider relative exercise 

prices, 𝜀, around 0.9, with maturities, 𝑇, close to 30, 60, and 90 days.  We also have a small 

amount of data with 𝜀 around 0.8 and maturity, 𝑇, of about 30 days. 

 5.2. Estimation of the Model 

We estimate the model based on equation (26) with non-linear least-squares regression.  

In this form, we think of the error term as additive with constant variance (although we calculate 

standard errors of estimated coefficients by allowing for serial correlation in the error terms).  

Log-linearization with a constant-variance error term (that is, a shock proportional to price) is 

problematic for low-strike options because it understates the typical error in extremely far-out-

of-the-money put prices, which are close to zero.  That is, this specification would give undue 

weight to puts with extremely low exercise prices. 

In the non-linear regression, we allow for monthly fixed effects to capture the unobserved 

time-varying probability of disaster, 𝑝௧, in equation (26).  We allow the estimated 𝑝௧ to differ 

across the seven stock-market indices; that is, we estimate index-time fixed effects.  Note that, 

for a given stock-market index and date, these effects are the same for each maturity, 𝑇, and 

relative exercise price, 𝜀.  We carry out the estimation under the constraint that all of the index-

time fixed effects are non-negative—corresponding to the constraint that all 𝑝௧ are non-negative.  

On average for the seven stock-market indices, the constraint of non-negative monthly fixed 

                                                 
19Direct access to this database has been discontinued.  We thank Josh Coval for sharing his version of the data.  We 
have the data from Berkeley Options Data Base through December 1995. 
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effects is binding for 8% of the observations.  Only a negligible number of the unconstrained 

estimates of the fixed effects are significantly negative. 

Table 1 shows the estimated equations.  The regressions apply to each of the seven stock-

market indices individually and also to joint estimation with pooling of all of the data.  In the last 

case, we constrain the estimated coefficients (including the monthly fixed effects) to be the same 

for each stock-market index. 

5.2.1.  Maturity Elasticities.  The estimated elasticities with respect to maturity, 𝛽், are 

close to one, as hypothesized.  For example, the estimated coefficient for the U.S. S&P 500 is 

0.992 (s.e. = 0.040) and that for all seven indices jointly is 0.961 (0.042).  The only case in 

which the estimated coefficient differs significantly from 1 at the 5% level is Japan (NKY), 

where the estimated coefficient is 0.881 (s.e. = 0.032).  The p-value for this estimated coefficient 

to be statistically different from 1 is 0.014.  In the main regression table, with the exception of 

Japan, the results indicate that prices of far-out-of-the-money put options on broad market 

indices are roughly proportional to maturity, in accordance with the rare-disasters model.  This 

nearly proportional relationship between options price and maturity for far-out-of-the-money put 

options is a newly documented fact that cannot be explained under the Black-Scholes model. 

The unit elasticity of options price with respect to maturity for far-out-of-the-money put 

options contrasts with the previously mentioned result from Brenner and Subrahmanyam (1988) 

that prices of at-the-money put options in the Black-Scholes model are proportional to the square 

root of maturity.20  This result arises because, with a diffusion process driven by i.i.d. normal 

shocks, the variance of the log of the stock price is proportional to time and, therefore, the 

                                                 
20We verified empirically that the maturity elasticity is close to one-half for at-the-money put options.  For the 
pooled sample with data from all seven stock-market indices, the estimated 𝛽் is 0.499 (s.e. = 0.031).  Similar point 
estimates apply for each of the seven stock-market indices considered individually. 
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standard deviation is proportional to the square root of time.  In contrast, as discussed earlier, the 

roughly proportional relationship between far-out-of-the-money put prices and maturity arises 

because, in a Poisson context, the probability of a disaster is proportional to maturity.21 

5.2.2.  Elasticities with respect to exercise price.  Table 1 shows estimates of the 

elasticity, 𝛽ఢ, of the put-options price with respect to the relative exercise price (holding fixed the 

term that involves 𝜂ଶ𝑞 in equation [26]).  The coefficient 𝛽ఢ corresponds in the model to 1 ൅ 𝛼 െ

𝛾, where 𝛼 is the tail coefficient for disaster sizes and 𝛾 is the coefficient of relative risk 

aversion.  The estimated 𝛽ఢ for the various stock-market indices are all positive and greater than 

one, as predicted by the model.  The estimated coefficients are similar across indices, falling into 

a range from 4.01 to 4.75.  The joint estimate across the seven indices is 4.55 (s.e. = 0.45). 

Rare-disasters research with macroeconomic data, such as Barro and Ursúa (2008) and 

Barro and Jin (2011), suggested that a 𝛾 of 3-4 would accord with the observed average 

(unlevered) equity premia.  With this range for 𝛾, the estimated values of 𝛽ఌ in Table 1 suggest 

that 𝛼 would be between 6 and 8.  This finding compares with an estimate for 𝛼 based on 

macroeconomic data on consumption in Barro and Jin (2011, Table 1) of 6.3 (s.e. = 0.8).  Hence, 

the estimates of 𝛼 implied by Table 1 accord roughly with those found from direct observation of 

the size distribution of macroeconomic disasters (based on consumption or GDP). 

5.2.3.  Estimated disaster probabilities.  We use the estimated monthly fixed effects for 

each stock-market index from the regressions in Table 1 to construct time series of estimated 

(objective) disaster probabilities, 𝑝௧.  Note from equations (26) and (27) that the estimation 

                                                 
21The resulting pricing formula is only approximate because it neglects, for example, the potential for multiple 
disasters within the time frame of an option’s maturity, omits a diffusion term, and also neglects the tendency of the 
disaster probability to revert over the life of an option toward a small baseline value.  However, for options that are 
not “too long,” these approximations will be reasonably accurate, consistent with the findings on maturity elasticity 
shown in Table 1. 
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identifies 𝑝௧ multiplied by the parameter 𝜂ଵ ൌ ఈ௭బ
ഀ

ሺఈିఊሻሺଵାఈିఊሻ
 , which will be constant if the size 

distribution of disasters (determined by 𝛼 and 𝑧଴) and the coefficient of relative risk aversion, 𝛾, 

are fixed.  When 𝜂ଵ is constant, the estimated 𝑝௧ for each stock-market index will be proportional 

to the estimated monthly fixed effect. The constancy of 𝜂ଵ is needed to interpret the fluctuations 

in the estimated 𝑝௧ as changes in physical probability rather than changes in either risk-aversion 

or disaster distribution. 

To estimate the level of 𝑝௧, we need a value for 𝜂ଵ, which depends in equation (27) on 𝛼, 

𝑧଴, and 𝛾.  We assume for a rough calibration that the threshold for disaster sizes is fixed 

at 𝑧଴ ൌ  1.1 [as in Barro and Jin (2011)] and that the coefficient of relative risk aversion is 

𝛾 ൌ  3.  We allow the tail coefficient, 𝛼, to differ for each stock-market index; that is, we allow 

prices to differ with respect to the size distribution of potential disasters.  We use the estimated 

coefficients from Table 1 for 𝛽ఌ (which equals 1 ൅ 𝛼 െ 𝛾 in the model) to back out the implied 

𝛼, also shown in Table 1.  These values range from 6.0 to 6.8, implying a range for 𝜂ଵ from 0.72 

to 0.88.  Dividing the estimated monthly fixed effects for each stock-market index by the 

associated 𝜂ଵ generates an estimated time series of 𝑝௧ for each country or region. 

These values of 𝑝௧ are shown for the seven stock-market indices in Figure 1, Panel A.  

Panel B presents the results just for the United States (SPX), with the standard volatility indicator 

(VIX) included as a comparison.22  Panel C shows the results for all indices estimated jointly 

(last column of Table 1).  Note that our assumed parameter values, embedded in the computation 

of 𝜂ଵ, influence the levels of the 𝑝௧  series in Figure 1, but not the time patterns. 

                                                 
22A discussion of the VIX is contained in Chicago Board Options Exchange (2014). 
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Table 2 provides summary statistics for the estimated disaster probabilities.  These 

probabilities, shown in Figure 1, Panel A, have high correlations among the countries, with an 

average pair-wise correlation for the monthly data of 0.89.  The high correlations across stock-

market indices suggest that the main variations in inferred disaster probabilities reflect the 

changing likelihood of a common, global disaster. 

The mean estimated disaster probability from Table 2 is 6.2% per year for the S&P 500 

and 6.1% for all countries jointly.  For the other indices, the means range from 4.6% for Japan 

(NKY) to 9.0% for Sweden (OMX).  These estimates can be compared with average disaster 

probabilities of 3-4% per year estimated from macroeconomic data on rare disasters—[see, for 

example, Barro and Ursúa (2008)].  However, this earlier analysis assumed that disaster 

probabilities were constant across countries and over time. 

The estimated disaster probabilities in Figure 1 are volatile and right-skewed, with spikes 

during crisis periods and lower bounds close to zero.  The U.S. disaster probability hit a peak of 

42% per year in October-November 2008, just after the Lehman crisis.  Similarly, the other six 

stock-market indices show their highest disaster probabilities around 40% in October-November 

2008.  Additional peaks in disaster probability occurred around the time of the Russian and 

Long-Term Capital Management (LTCM) crises in August-September 1998.  In this case, the 

estimated U.S. disaster probability reached 29% in August 1998. 

The patterns found for the U.S. disaster probability mirror results for options-derived 

equity premia in Martin (2015) and for disaster probabilities in Siriwardane (2015). The U.S. 

disaster probability is also highly correlated with the Chicago Board Options Exchange’s well-

known volatility index (VIX), as indicated in Figure 1, Panel B.  The VIX, based on the S&P 500 

index, is from a weighted average of puts and calls with maturity between 23 and 37 days and for 
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an array of exercise prices.  The correlation between the VIX and our U.S. disaster probability 

(using month-end data from August 1994 to June 2018) is 0.96 in levels and 0.90 in monthly 

changes.  However, the levels of the two series are very different, with the 𝑝௧ series having the 

interpretation as an objective disaster probability (per year) and the VIX representing the fair 

strike of a variance swap contract (with units of annualized standard deviation of stock-price 

changes). Additionally, the 𝑝௧ series and the VIX have differentiated power in forecasting equity 

returns as discussed in a later section. 

How unlikely is the no-disaster world that we have apparently experienced in the sample 

period given the market-implied disaster probabilities?  The cumulative survival probability—the 

probability of not having experienced a disaster—from 1994 to 2018 for the United States 

considered in isolation is 22%.  The range for other countries considered individually is similar, 

from 20% (Sweden) to 39% (Japan) during the relevant sample period for each country.  A 

substantial amount of disaster risk was priced by the options market around the 2008-09 financial 

crisis.  During the period 2008-2010, the cumulative probabilities of experiencing at least one 

disaster were 36% for the United States and of similar magnitude for the other places. 

The estimated U.S. disaster probability, 𝑝௧ , is positively but not that strongly correlated 

with the indexes of economic policy uncertainty (EPU) constructed by Baker, Bloom, and Davis 

(2016).  From August 1994 to June 2018, the correlation of our 𝑝௧ series with their news-based 

uncertainty measure was 0.41 and that with their broader uncertainty measure was 0.46.  As an 

example of a deviation, in January-February 2017, our 𝑝௧ series was around 1% (compared to a 

mean of 6.2%), the news-based policy uncertainty indicator was close to 200 (mean of 113), and 

the broader policy uncertainty indicator was about 140 (mean of 106).  In other words, disaster 
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probability was low (according to the financial markets), while policy uncertainty was high 

[according to Baker, Bloom, and Davis (2016) and, presumably, most political commentators]. 

The estimated first-order AR(1) coefficient for the estimated U.S. disaster probability is 

0.88 (s.e. = 0.03), applying at a monthly frequency.  This coefficient implies that shocks to 

disaster probability have a half-life around eight months.  The persistence of disaster 

probabilities for the other stock-market indices (Figure 1) is similar to that for the United States, 

with estimated AR(1) coefficients ranging from 0.85 to 0.89, except for Japan at 0.80.  An 

important inference is that the movements in disaster probability shown in Figure 1 are 

temporary.  The series is associated with occasional sharp upward spikes (involving the 

probability 𝑞), followed by reasonably quick reversion toward a small baseline value. 

Although we attributed the time pattern in Figure 1 to variable disaster probability, 𝑝௧, 

the variations in the monthly fixed effects may also reflect changes in the other parameters 

contained in the term that multiplies 𝑝௧ in equation (26) and is shown in equation (27) as  

𝜂ଵ ൌ 𝛼𝑧0
𝛼

ሺ𝛼െ𝛾ሻሺ1൅𝛼െ𝛾ሻ.23  For example, outward shifts in the size distribution of disasters, 

generated by reductions in the tail parameter, 𝛼, or increases in the threshold disaster size, 𝑧଴, 

would work like increases in 𝑝.24  Similarly, increases in the coefficient of relative risk aversion, 

𝛾, would raise 𝜂ଵ.  This kind of change in risk preference, possibly due to habit formation, has 

been stressed by Campbell and Cochrane (1999).  Separation of changes in the parameters of the 

disaster distribution from those in risk aversion requires simultaneous consideration of asset-

                                                 
23In the model with i.i.d. shocks, this term does not depend on the intertemporal elasticity of substitution for 
consumption, 1/𝜃, or the rate of time preference, 𝜌. 
24Kelly and Jiang (2014, p. 2842) assume a power-law density for returns on individual securities.  Their power law 
depends on a cross-sectional parameter and also on aggregate parameters that shift over time.  In contrast to our 
analysis, they assume time variation in the economy-wide values of the tail parameter, analogous to our 𝛼, and the 
threshold, analogous to our 𝑧଴.  (Their threshold corresponds to the fifth percentile of observed monthly returns.) 
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pricing effects (reflected in Figure 1) with information on the incidence and sizes of disasters 

(based, for example, on movements of macroeconomic variables). 

 5.2.4.  Coefficients associated with changing disaster probability.  The options-pricing 

formula in equation (26) involves the probability, 𝑞, of an upward jump in disaster probability, 

𝑝௧.  The probability 𝑞 enters multiplicatively with 𝜂ଶ, given in equation (27).  In other words, 

𝜂ଶ𝑞 is identified in the data.25  The results in Table 1 show that the estimates of 𝜂ଶ𝑞 range from 

0.078 to 0.102, except for Japan at 0.128.  Note that the underlying values of 𝜂ଶ𝑞 are assumed to 

be constant over time for each stock-market index; we consider later whether this restriction is 

satisfactory.  The effect of 𝜂ଶ𝑞 on the options price interacts in equation (26) with the exercise 

price, 𝜀, to the power 𝛼∗-𝛼.  Because the sample for each stock-market index has variation each 

month in 𝜀, the non-linear estimation identifies 𝛼∗-𝛼.  These estimates range, as shown in 

Table 1, from 7.9 to 10.9. 

 Note in equation (26) that the put-options price, 𝛺, depends on the sum of 𝜂ଵ𝑝௧ and 𝜂ଶ𝑞, 

with the second term multiplied by 𝜀ఈ∗ିఈ.  Given that 𝛼∗-𝛼  is estimated to be around 9.5, this 

last term ranges from 0.001 when 𝜀 ൌ 0.5 to 0.45 when 𝜀 ൌ 0.9.  Options pricing depends, 

accordingly, on an effective probability that weighs the current disaster probability, 𝑝௧, along 

with the probability, 𝑞, of a sharp upward future rise in 𝑝௧.  From this perspective, it is clear that 

omitting the chance of future rises in disaster probability—that is, assuming 𝑞 ൌ 0—will result 

in estimates of 𝑝௧ that are too high on average compared with objective probabilities of disasters.  

Moreover, this effect will be much more significant at high exercise prices, such as 𝜀 ൌ 0.9, than 

                                                 
25We can therefore identify 𝑞 if we know the value of 𝜂ଶ ൌ

ఈ∗ሺ ௭బ
∗ሻഀ∗

ሺఈ∗ିఊሻሺଵାఈ∗ିఊሻ
.  If we continue to assume 𝛾 ൌ 3 and use 

the estimates of 𝛼∗ implied by the results in Table 1, the missing element is the threshold, 𝑧଴
∗.  However, reasonable 

variations in 𝑧଴
∗ imply large variations in 𝜂ଶ and, hence, in the estimated 𝑞. 
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at low ones, such as 𝜀 ൌ 0.5.  For very low exercise prices, such as 𝜀 ൌ 0.5, almost all of the 

option value reflects the chance of a realization of a disaster during the life of the option.  In 

contrast, for high exercise prices, such as 𝜀 ൌ 0.9, the option value depends partly on the 

possibility of a disaster occurrence and partly on the possibility of 𝑝௧ rising sharply. 

 As noted before, the term involving 𝑞 ൐ 0 in equation (26) implies 𝛺 ൐ 0 even when 

𝑝௧ ൌ 0.  For example, using the estimated value 𝜂ଶ𝑞 ൌ 0.10 (from the pooled sample in Table 1) 

and taking 𝑝௧ ൌ 0, the term ηଵp௧ ൅ ηଶq𝜀ఈ∗ିఈ in equation (26) equals 0.037 when 𝜀 ൌ 0.9.  That 

is, the “effective probability” that determines 𝛺 can be as high as 4% per year even though 

𝑝௧ ൌ  0 applies. 

5.2.5.  Long-term results for the United States.  A lot of analysis of options pricing, 

starting with Bates (1991), suggests that the nature of pricing changed in character following the 

October 1987 stock-market crash.  In particular, a “smile” in graphs of implied volatility against 

exercise price is thought to apply only post-1987.  As noted before, we expanded our analysis to 

the period June 1983 to July 1994 by using market-based quotes from the Berkeley Options Data 

Base. 

Table 3 extends the analysis of put-options pricing from Table 1 to consider U.S. 

regression estimates over the longer period 1983-2018.  In this estimation, the data from 

Berkeley Options Data Base (June 1983 to July 1994) relate to the S&P 100 but are treated as 

comparable to the OTC data (August 1994-June 2018) associated with the S&P 500.  The 

estimates of the various coefficients are close to those shown in Table 1, which were based on 

data from August 1994 to June 2018. 

As before, we back out a time series for estimated disaster probability, 𝑝௧, based on the 

monthly fixed effects, assuming that the parameters in the term 𝜂ଵ in equations (26) and (27) that 
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involve 𝑝௧ are fixed.  We use levels for these other parameters similar to those used before 

(including 𝜂ଵ ൌ 0.73).  Figure 2 graphs the resulting time series of estimated U.S. disaster 

probability.  Readily apparent is the dramatic jump in 𝑝௧ at the time of the October 1987 stock-

market crash, in which the S&P 500 declined by 20.5% in a single day.  The estimated 𝑝௧ 

reached 135% per year but fell rapidly thereafter.26 The Persian Gulf War of 1990-1991 caused 

another rise in disaster probability, to 19-20%. 

The bottom part of Table 3 shows statistics associated with the time series in Figure 2.  A 

comparison pre-crash (June 1983-Sept 1987) and post-crash (Oct 1988-July 1994), based on the 

data from the Berkeley Options Data Base, shows an increase in the typical size and volatility of 

the estimated disaster probability, 𝑝௧.  The change in mean is from 0.004 to 0.029, and the 

change in standard deviation is from 0.007 to 0.047.  The period August 1994-June 2018, based 

on OTC data related to the S&P 500, shows further rises in mean and standard deviation—to 

0.070 and 0.071, respectively.  Thus, the overall suggestion is that the mean and standard 

deviation of the disaster probability shifted permanently upward because of the October 1987 

stock-market crash. 

 5.3.  Predictive Power of Disaster Probability for Economic Growth  

We use our estimated disaster probability to forecast the conditional distribution of 

economic growth. Since the disaster probability applies to left-tail events, we use 𝑝௧ to forecast 

lower quantiles of growth in U.S. annual and quarterly GDP and monthly industrial 

production (IP). The approach follows Adrian, Boyarchenko, and Giannone (2019), who 

                                                 
26A probability or hazard rate above one at a point in time is consistent with the realized disaster probability being 
below one in any finite period.  For example, a probability of 135% per year implies a disaster probability of 89% 
over one month. 
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examine the conditional distribution of GDP growth as a function of the Financial Condition 

Index. 

We estimate quantile forecasting regressions of one-year and one-quarter ahead U.S. real 

GDP growth and one-month ahead IP growth on lagged disaster probabilities and lagged GDP 

growth at matching horizons. Specifically, the ordinary least squares forecasting regression is 

specified as Δ𝐺𝐷𝑃௧→௧ା௛ ൌ 𝛽଴ ൅ 𝛽ଵΔ𝐺𝐷𝑃ሺ௧ି௛ሻ→௧ ൅ 𝛽ଵ𝑝௧ ൅ 𝜖, where Δ𝐺𝐷𝑃௧→௧ା௛ ൌ ீ஽௉೟శ೓ିீ஽௉೟

ீ஽௉೟
 

and 𝑝௧ is the last monthly value observed before 𝑡. One-year GDP growth is measured as the 

year-over-year proportionate change in real GDP observed at a quarterly frequency. One-quarter 

GDP growth is measured as the quarter-over-quarter seasonally-adjusted annual rate. The 

quantile forecasting regressions estimate coefficients at specified quantile 𝜏 by minimizing the 

weighted absolute value of residuals: 

 𝛽መሺ𝜏ሻ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛ఉഓ
∑ ቀ𝜏 െ 𝟏൛௒೟శ೓ି௑೟

ᇲఉഓஸ଴ൟቁ ሺ 𝑌௧ା௛ െ 𝑋௧
ᇱ𝛽ఛሻ்ି௛

௧ୀଵ , 

where ℎ is the forecasting horizon and 𝟏 is an indicator function that equals one if the residual is 

negative and zero otherwise. The predicted value from this regression is the 𝜏-quantile of 𝑌௧ା௛ 

given 𝑋௧,  𝑄ሺ𝑌௧ା௛|𝑋௧ሻ ൌ 𝑋௧
ᇱ𝛽ఛ. 

Figure 3 presents the coefficients of the quantile regressions along with the OLS 

estimates.  The left side uses the estimated disaster probability, 𝑝௧, and the right side uses the 

economic policy uncertainty index (EPU). The results suggest that the information content of 

𝑝௧(based on data from financial instruments) is distinct from that of policy uncertainty (derived 

from media reports).  

The left panels of Figure 3 show that the slope of growth in response to disaster 

probabilities varies across quantiles. At the lower growth quantiles, the slopes of growth in 

response to lagged disaster probabilities, observed before the growth measurement period, are 
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distinct from the OLS estimates at the 5% significance level constructed using Newey-West 

adjusted standard errors. A one percentage point increase in disaster probability is associated 

with subsequent declines in GDP (one-quarter and one-year decline of 0.21% per year) and IP 

(one-month decline of 0.33% per year) for the lowest decile of the growth distribution. This 

vulnerability to disaster risk is diminished for the upper quantiles of growth. The OLS coefficient 

estimates are statistically insignificant. This result suggests that 𝑝௧ is a poor predictor of 

economic growth on average but is more informative about the left-tail growth outcomes. As a 

comparison, the right panels show that an increase in the EPU index is not significantly 

associated with lower future growth. Moreover, the growth response to EPU is symmetric across 

quantiles, suggesting that EPU does not relate particularly to disaster risk. 

The estimated objective disaster probability can also be applied in other contexts.  Recent 

work by Chodorow-Reich, Karabarbounis, and Kekre (2019) applies our model to estimate 

disaster probability in the Greek economy using options prices traded on the Athens Stock 

Exchange from 2001 and 2017. The authors find that the elasticity of the options price with 

respect to moneyness and time are similar to our estimates for other countries. The peak of 

disaster probability coincides with major political and economic events during the crisis period. 

The time series is then used to calibrate a macro model.  

5.4.  Results with OptionMetrics data on put-options prices 

One possible shortcoming of the results in Table 1 is that they are based on underlying 

OTC data that represent menus of options prices offered to clients by a large financial firm.  

Although these menus are informed by market transactions, they do not necessarily correspond 

to actual trades. 
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To check whether the reliance on OTC data is an issue, we redid the U.S. analysis shown 

in Table 1 using market-based information from OptionMetrics on far-out-of-the-money put 

options based on the S&P 500 index.  As in Table 1, these data cover options with relative 

exercise prices, 𝜀, of 0.5, 0.6, 0.7, 0.8, and 0.9, and maturities of 30, 60, 90, and 180 days.  The 

sample is from January 1996 to December 2017.  Unfortunately, we lack comparable data for 

other countries.27  The regression results with the OptionMetrics data are in Table 4. 

The number of observations for the OptionMetrics sample in Table 4 is 3886, compared 

to 5740 for the U.S. SPX in Table 1.  The main reason for the decline in sample size is missing 

data from OptionMetrics, not the truncation of the sampling interval.  Despite the reduction in 

sample size, it is clear that the OptionMetrics data provide a great deal of coverage over a long 

period on far-out-of-the-money put options on the S&P 500. 

The main inference from Table 4 is that the estimated coefficients and fit using 

OptionMetrics data are close to those based on the U.S. OTC data in Table 1.  One likely reason 

for this correspondence is that the producers of the OTC information take account of market 

data, including those that appear in OptionMetrics.  In any event, the closeness in results for 

OTC and market data for the United States makes us more comfortable with the OTC results for 

the other six stock-market indices, for which we lack long-term market-based information on 

put-options prices. 

5.5.  Test of model robustness 

In the underlying theory, the asset-pricing formula in equation (26) applies as an 

approximation—based, for example, on neglecting possibilities of multiple disasters, neglecting 

pricing implications of a diffusion term, and ignoring effects from the tendency of 𝑝௧ to revert 

                                                 
27We have data from Bloomberg but only since late 2010. 
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over time toward a small baseline value.  More generally, properties such as 𝛽் ൌ 1 (and 

constant) and 𝛽ఌ ൌ 1 ൅ 𝛼 െ 𝛾 (and constant) would not hold precisely.  In this section, we 

explore the empirical robustness of the model estimated in Table 1 under various scenarios. 

5.5.1.  Constancy of the maturity elasticity, βT.  We re-estimated the regressions in Table 

1 while allowing for different values of 𝛽் over ranges of maturity, 𝑇.  As an example, we 

estimated one value of 𝛽் for 𝑇 equal to 30 or 60 days and another for 𝑇 equal to 90 or 180 days.  

For the United States (SPX), the estimated 𝛽் is 0.985 (s.e. = 0.036) in the low range of 𝑇 and 

0.946 (0.052) in the high range, with a p-value of 0.33 for equality of these two coefficients.  

Similarly, for all stock-market indices estimated jointly, the estimated 𝛽் is 0.954 (s.e. = 0.028) 

in the low range of 𝑇 and 0.911 (0.055) in the high range, with a p-value of 0.33 for equality of 

these two coefficients. 

 We also redid the regressions in Table 1 while expanding the sample to include put 

options with one-year maturity.  For the United States (SPX), the estimated 𝛽் becomes 0.946 

(s.e. = 0.038), compared to 0.992 (0.040) in Table 1, which allows for maturities only up to six 

months.  For all stock-market indices estimated jointly, the estimated 𝛽் with the inclusion of 

one-year maturity becomes 0.907 (s.e. = 0.039), compared to 0.961 (0.031) in Table 1. 

 The general pattern is that the estimated 𝛽் declines with the inclusion of longer 

maturities.  However, the effects are moderate even for a range of 𝑇 up to one year.  These 

findings support the underlying approximations in the model but also suggest that the sample 

should be restricted to options that are not overly long; for example, up to six months. 

We also considered whether 𝛽் is the same over different ranges of exercise price, 𝜀 

(knowing that, for 𝜀 ൌ 1—at-the-money options—𝛽்  would be close to 0.5).  We re-estimated 

the regressions in Table 1 while allowing for different values of 𝛽் over various ranges of 𝜀.  As 
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an example, we estimated one value of 𝛽் for 𝜀 equal to 0.5, 0.6, or 0.7 and another for 𝜀 equal 

to 0.8 or 0.9.  For the United States (SPX), the estimated 𝛽் is 1.201 (s.e. = 0.125) in the low 

range of 𝜀 and 0.973 (0.039) in the high range, with a p-value of 0.070 for equality of these two 

coefficients.  Similarly, for all stock-market indices estimated jointly, the estimated 𝛽் is 1.189 

(s.e. = 0.085) in the low range of 𝜀 and 0.940 (0.040) in the high range, with a p-value of 0.001 

for equality of these two coefficients.  Thus, there is some indication that 𝛽் is lower at high 𝜀 

than at low 𝜀.  However, even for 𝜀 as high as 0.9, the estimated 𝛽் remains close to 1. 

5.5.2.  Stability of coefficients associated with exercise price.  We also checked whether 

the coefficient 𝛽க in Table 1 is stable over various ranges of 𝜀.  As an example, we estimated one 

𝛽க for 𝜀 equal to 0.5, 0.6, or 0.7 and another for 𝜀 equal to 0.8 or 0.9.  For the United States 

(SPX), the estimated 𝛽க is 4.52 (s.e. = 0.27) in the low range of 𝜀 and 4.42 (0.88) in the high 

range, with a p-value of 0.45 for a test of the equality of these coefficients.  Similarly, for all 

stock-market indices estimated jointly, the estimated 𝛽க  is 4.16 (s.e. = 0.27) in the low range of 

𝜀 and 4.27 (0.84) in the high range, with a p-value of 0.48 for a test of the equality of these 

coefficients.  Thus, these results are consistent with the stability of the coefficient 𝛽க over ranges 

of 𝜀. 

5.5.3. Maturity-varying epsilon threshold.  We test our model with an alternative 

sampling of option prices that are maturity-dependent. This is because an epsilon of 0.9 could be 

considered far out-of-the-money at the one-month horizon, but this threshold might not be 

enough at longer maturities. We vary the upper epsilon threshold by the maturity of the option in 

two ways. First, we modify the threshold to 0.8 for options greater than one month but keep 

options with an epsilon of 0.9 for one-month options. Second, we expand the sample of option 

prices to include options with epsilon at every 0.025 interval (through interpolating the implied 
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volatility surface and reconstructing the more granular options prices). We then calibrate a 

different cutoff at different maturities based on a Brownian diffusion process in which the 

options are rarely in the money based on diffusion alone. Table 5 presents the findings of this 

exercise. We find that the regression coefficients largely accord with our main model. The 

estimates are 𝛽க = 5.10 (s.e. = 0.58) and 𝛽୘  = 1.12 (s.e. = 0.083) using the first method described 

above. The second method yields similar estimates.  

5.5.4.  Different sample periods.  We checked for the stability of the regression 

coefficients over time by re-estimating the regressions in Table 1 with separate coefficients for 

the four sub-periods shown in Table 6.  These periods are Aug 1994–Jan 2003, Feb 2003-Feb 

2008, Mar 2008-Mar 2013, and Apr 2013-Jun 2018.  These intervals were chosen to be of 

roughly equal length, starting from January 1998, at which point five of the seven stock-market 

indices have data.  The results in Table 6 are for the United States (SPX) and for the pooled 

sample with data for the seven indices. 

 The general pattern in Table 6 is that the estimated coefficients are reasonably stable 

across the sub-periods, although hypotheses of equality of coefficients over time tend to be 

rejected at usual critical levels.  For example, for the maturity elasticity, 𝛽୘, the range of 

estimated values over the four sub-periods is fairly narrow for the U.S. data—0.998 

(s.e. = 0.043), 1.203 (0.048), 0.920 (0.042), and 1.303 (0.057).  Similar results obtain for the 

pooled sample of seven indices.  Despite the narrow range of estimates, the hypothesis of 

equality is rejected in each case with a p-value of 0.000 because the estimated coefficients have 

high precision. 
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 Similarly, for the coefficient 𝛽க related to exercise-price elasticity, the range of estimates 

for the United States is from 4.00 to 6.30, and the hypothesis of equal coefficients is rejected 

with a p-value of 0.000.  Analogous findings apply for the sample of seven stock-market indices. 

 For the estimated value of 𝛼∗ െ 𝛼, the range is wider—from 4.92 to 10.65 for the United 

States.  The p-value for the hypothesis of equal coefficients has a higher p-value, 0.055. 

 Finally, the estimated value of 𝜂ଶ𝑞 for the United States is from 0.072 to 0.098, and the 

p-value for equal coefficients is 0.084.  For the seven-index sample, the range is from 0.077 to 

0.111.  These results support the assumption that, at least since August 1994, the probability, 𝑞, 

of a sharp upward movement in disaster probability, 𝑝௧, is relatively stable.  That is, unlike the 

dramatic variations in 𝑝௧ itself, it seems reasonable to assume time invariance with regard to the 

volatility associated with potential variations in 𝑝௧. 

5.5.5.  Estimated Diffusion Term.  Our estimated pricing formula for far-out-of-the-

money options, where 𝜖 ൑ 0.9, can be used to estimate the pricing effects from the usual 

diffusion term for near-the-money options, where 0.9 ൏ 𝜖 ൑ 1.  We start by using the regression 

results for the overall sample of countries in Table 1 to calculate fitted values of 𝛺 for 0.9 ൏ 𝜖 ൑

1 and a specified value of 𝑇.  We assume that these fitted values reflect the disaster component 

of options prices.  We then assume that the observed values of 𝛺 in the near-the-money range 

also include a significant diffusion component.  Therefore, the difference between the observed 

and fitted values of 𝛺 gives our estimate of the diffusion component. 

Figure 5 gives the results for short maturity, where 𝑇 ൌ 1 month (0.083 years).  The 

results shown are for averages associated with the S&P 500 from 1994 to 2018.  The horizontal 

axis has values of 𝜀 from 0.9 to 1.0, and the vertical axis shows averages for 𝛺 and its estimated 

breakdown into disaster-risk and diffusion components.  The disaster-risk component represents 
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nearly the entirety of put prices for options with 𝜖 not far above 0.9.  However, the disaster-risk 

share falls as 𝜀 rises toward 1.0, at which point the disaster-risk component is 59% of the total.  

Our estimated decomposition of options prices into disaster-risk and diffusion components is 

analogous to results in Bollerslev and Todorov (2011), who find that around three-fourths of the 

variance risk premium is attributable in short-maturity options to large tail risks. 

6. Conclusions 

Options prices contain rich information on market perceptions of rare disaster risks.  We 

develop a new options-pricing formula that applies when disaster risk is the dominant force, the 

size distribution of disasters follows a power law, and the economy has a representative agent 

with Epstein-Zin utility.  The formula is simple but its main implications about maturity and 

exercise price accord with U.S. and other data from 1983 to 2018 on far-out-of-the-money put 

options on broad stock-market indices. 

We extract objective disaster probabilities from option prices utilizing our model. This 

market-based assessment of disaster probability is a valuable indicator of aggregate economic 

conditions for practitioners, macroeconomists, and policymakers.  An increase in disaster 

probability is associated with a decline in the conditional mean of growth—downside  risks to 

growth vary with disaster probability while upside risks to growth remain stable when disaster 

probability increases. Disaster probability as registered by the financial markets contains 

different information about tail risks in the economy when compared to political uncertainty. 
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Figure 1. Estimated Disaster Probabilities 

The figure shows the estimated disaster probabilities for the seven stock-market indices associated with 
the regressions in Table 1.  The annualized disaster probability, 𝑝௝௧  for index 𝑗, is calculated from the 
estimated monthly fixed-effect coefficients in the form of equation (26), assuming in the formula for η1 in 
equation (27) that 𝑧଴ ൌ 1.1, 𝛾 ൌ 3, and 𝛽ఌ  ൌ 1 ൅ 𝛼௝ െ 𝛾, where 𝛽ఌ  is given in Table 1.  Panel A graphs 
the estimated disaster probabilities for the seven stock-market indices associated with the regressions in 
Table 1.  Panel B is for the United States only (SPX).  The VIX measure of volatility is discussed in 
Chicago Board Options Exchange (2014).  Panel C is for the seven indices estimated jointly (last column 
of Table 1). 

Panel A: Seven Stock Market Indices Individually 

 

 

Panel B: Disaster probability and the VIX 
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Panel C:  Seven Stock-Market Indices Jointly 

 

 

 

Figure 2. Estimated U.S. Disaster Probabilities, 1983-2018 

This exhibit presents the estimated U.S. disaster probabilities, 𝑝௧, associated with the regression in Table 
3.  The underlying data from August 1994 to June 2018 are the OTC data based on the S&P 500.  The 
data from June 1983 to July 1994 are associated with the S&P 100 and are from the Berkeley Options 
Data Base.  The methodology for inferring disaster probabilities from the estimated monthly fixed effects 
corresponds to that used in Figure 1.  The left panel presents the estimated probability before 1990 
and the right panel presents the estimated probability since 1990. 
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Figure 3. Forecast of Conditional Growth for United States 
 

This figure shows the estimated coefficients in quantile regressions of one-year and one-quarter ahead U.S. real GDP 
growth (top and middle) and one-month ahead Industrial Production (IP) growth (bottom) on disaster probability (left) 
and EPU index (right).  The regressions also include a lag of the growth measure of the same horizon as the forecasting 
period without overlap. For instance, the OLS regression for the top left panel is Δ𝐺𝐷𝑃௧ାଵ ൌ 𝛽଴ ൅ 𝛽ଵΔ𝐺𝐷𝑃௧ ൅ 𝛽ଵ𝑝௧ ൅

𝜖, where Δ𝐺𝐷𝑃௧ାଵ ൌ
ீ஽௉೟శభ ೤ೝିீ஽௉೟

ீ஽௉೟
 and 𝑝௧ is the last monthly value observed before 𝑡. The red solid lines graph the 

coefficients of the forecasting regressions for different quantiles (𝜏). The dotted blue lines are the OLS estimates. The 
95-percentile and 90 percentile confidence intervals (grey bands) associated with the OLS estimates are constructed 
with Newey-West adjusted standard errors. The sample period is 1983 to 2018 (the extended U.S. disaster probability 
time series). GDP growth measures are the year-over-year percentage changes and the quarter-over-quarter seasonally 
adjusted annual rate, both observed quarterly.  IP growth is the change in the log of the IP level observed monthly. 
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 Figure 4. Decomposition of Option Prices into Disaster-Risk and Diffusion Components 

 

 

This figure shows the decomposition of put options prices into components that represent disaster risk and 
a diffusion process.  To obtain the contribution of disaster risk, we calculate the fitted values of near-the-
money put prices (epsilon (moneyness) between 0.9 and 1) using our model as applied to the overall 
sample of countries from Table 1.  The disaster-risk component of the graph shows the application of 
these estimates to short maturity options (𝑇 ൌ 1 𝑚𝑜𝑛𝑡ℎ) to averages of data for the U.S. S&P 500 from 
1994 to 2018.  The estimated diffusion component is the difference between the observed options prices 
and the fitted values. 
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Table 1 Regressions for Put-Options Prices 

OTC Data, 1994-2018 

Index SPX FTSE ESTX DAX NKY OMX SMI -- 

Country/Region US UK EURO GER JAP SWE SWZ ALL 

 
Aug94-  
Jun18 

Jan98- 
Jun18 

Jun98- 
Jun18 

Jan00- 
Jun18 

Sep 97- 
Jun18 

Jan98- 
Jun18 

Jan98- 
Jun18 

Aug94- 
Jun18 

𝜷𝑻 0.992 0.997 0.943 0.946 0.881 0.922 1.004 0.961 
  (.040) (.046) (.045) (.044) (.032) (.045) (.046) (.042) 
𝜷𝝐 4.73 4.66 4.45 4.15 4.01 4.64 4.75 4.55 
  (.465) (.429) (.463) (.452) (.480) (.460) (.428) (.447) 
𝜶∗ െ 𝜶  9.42 8.29 7.87 7.68 10.87 8.83 9.71 9.35 
 (6.594) (6.101) (5.386) (4.572) (5.990) (6.904) (6.190) (6.284) 
𝜼𝟐𝒒 0.087 0.078 0.095 0.102 0.128 0.103 0.090 0.098 
 (.044) (.033) (.034) (.032) (.064) (.051) (.044) (.046) 
Implied est of 𝜶 6.73 6.66 6.45 6.15 6.01 6.64 6.75 6.55 

Implied est of 𝜼𝟏 0.725 0.737 0.777 0.844 0.882 0.740 0.720 0.756 

R-squared 0.973 0.968 0.970 0.968 0.957 0.957 0.965 0.914 

𝝈  0.0012 0.0014 0.0016 0.0018 0.0019 0.0021 0.0014 0.0026 

𝑵  5740 4920 4820 4920 4968 4920 4920 35208 

Mean dep var. 0.0038 0.0040 0.0052 0.0054 0.0048 0.0053 0.0034 0.0045 

𝝈 dep var. 0.0075 0.0080 0.0095 0.0099 0.0092 0.0101 0.0073 0.0089 
 

 
This table presents non-linear least-squares regression estimates of the model for pricing far-out-of-the 
money put options with variable disaster probability.  We use OTC data on relative put-option prices, 𝛺, 
for seven stock-market indices with maturity, 𝑇, of 30, 60, 90, and 180 days and relative exercise price, 𝜀, 
of 0.5, 0.6, 0.7, 0.8, and 0.9.  The estimation corresponds to equation (26):  Ω ൌ T𝜀ଵାఈିఊ ∙ ሾ𝜂ଵ𝑝௧ ൅
𝜂ଶ𝑞𝜀ሺఈ∗ିఈሻሿ, where 𝑝௧ is the disaster probability, 𝛼 is the tail parameter for disaster sizes, 𝛼∗ is the tail 
parameter for stock-price changes induced by upward jumps in 𝑝௧, 𝑞 is the probability of an upward jump 
in 𝑝௧, 𝛾 is the coefficient of relative risk aversion, and 𝜂ଵ and 𝜂ଶ are constants shown in equation (27).   
We use the estimated monthly fixed effects for each stock-market index to gauge the variations in 𝜂ଵ𝑝௧ 
and then use a calibrated value of 𝜂ଵ to infer levels of 𝑝௧.  The results are in Figure 1.  The estimation 
constrains 𝑝௧ ൒ 0 for each observation.  This constraint turns out to be binding on average for 8% of the 
observations for the seven stock-market indices.  The column labeled “all” pools the data on the seven 
stock-market indices and uses the same coefficients and set of monthly fixed effects for all indices.  The 
estimated exponent on 𝑇, 𝛽், should equal 1.  The estimated exponent on the first 𝜀 term, 𝛽ఢ, should 
equal 1 ൅ 𝛼 െ 𝛾.  Implied estimates of 𝛼 are shown, based on 𝛾 ൌ 3.  Implied estimates of 𝜂ଵ are shown, 
assuming in equation (27) that the threshold value for disaster size is 𝑧଴ ൌ 1.1.  Cross-section-clustered 
standard errors (which allow for serial correlation of the error terms) are in parentheses. 
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Table 2. Statistics for Estimated Disaster Probabilities 

Index sample mean std. dev. maximum 

SPX (US) 1994.08-2018.06 0.062 0.066 0.425 

FTSE (UK) 1998.01-2018.06 0.065 0.070 0.398 

ESTX (Euro area) 1998.06-2018.06 0.069 0.068 0.371 

DAX (Germany) 2000.01-2018.06 0.058 0.064 0.324 

NKY (Japan) 1998.01-2018.06 0.045 0.052 0.450 

OMX (Sweden) 1998.01-2018.06 0.077 0.078 0.435 

SMI (Switz.) 1998.01-2018.06 0.056 0.070 0.380 

ALL 1994.08-2018.06 0.061 0.065 0.410 

This table presents statistics on estimated disaster probabilities from the regressions in Table 1.  The 
disaster probabilities are calculated as described in the notes to Figure 1. 
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Table 3.  Regression for U.S. Put-Options Prices 

Berkeley and OTC Data, 1983-2018 

𝜷𝑻 0.992 (0.036) 
𝜷𝝐 4.91 (0.49) 

𝜶∗ െ 𝜶 10.61 (8.27) 
𝜼𝟐𝒒 0.091 (0.059) 

R-squared 0.964 
𝝈 0.0015 
𝑵 6370 

 

Statistics for Estimated Disaster Probabilities (shown in Figure 2) 

Period start Period end mean std. dev. maximum 
June 1983 June 2018 0.064 0.097 1.35 
June 1983 Sept 1987 0.004 0.007 0.025 
Oct 1987 Sept 1988 0.283 0.410 1.35 
Oct 1988 Jul 1994 0.029 0.047 0.202 
Aug 1994 June 2018 0.070 0.071 0.459 

 

The form of the regression corresponds to that for the U.S. SPX in Table 1.  The data from June 1983 to 
July 1994 are based on the S&P 100 index and are market-based information from the Berkeley Options 
Data Base.  The data from August 1994 to June 2018 are OTC values based on the S&P 500, as in 
Table 1.  For the Berkeley data, we formed monthly panels of put-options prices by aggregating quotes 
from the last five trading days of each month.  We applied a bivariate linear interpolation on the implied 
volatility surface to obtain put prices with granular strikes at every 10% moneyness interval and 
maturities ranging from one to six months.  The methodology for inferring disaster probabilities from the 
estimated monthly fixed effects corresponds to that used in Figure 1, with the results shown in Figure 2.  
Because of missing information in the Berkeley data, many months before August 1994 do not appear in 
the regression or in Figure 2.  Cross-section-clustered standard errors (which allow for serial correlation 
of the error terms) are in parentheses.  
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Table 4 Regression for U.S. Put-Options Prices OptionMetrics Data, 1996-2017 

 

𝜷𝑻 0.951 (0.033) 
𝜷𝝐 4.53 (0.43) 

𝜶∗ െ 𝜶 8.98 (6.09) 
𝜼𝟐𝒒  0.087 (0.039) 

R-squared 0.973 
𝝈 0.00144 
𝑵 3886 

 

This regression corresponds to that for the U.S. SPX in Table 1, except for the use of market-
based OptionMetrics data over the period January 1996-December 2017. 

 

Table 5 Model Fit with Maturity-dependent Epsilon Thresholds 

 A. Regular sample B. Expanded sample 

𝜷𝑻 1.12 (0.083) 1.14 (0.042) 
𝜷𝝐 5.10 (0.58) 5.44 (0.31) 

𝜶∗ െ 𝜶 6.10 (6.37) 5.94 (6.68) 
𝜼𝟐𝒒 0.068 (0.059) 0.050 (0.028) 

R-squared 0.959 0.963 
𝜮 0.000829 0.000751 
𝑵 4879 17507 

 

This table presents the regression results using put options with the upper threshold for epsilon 
(moneyness) that varies with the maturity of the option. Column A presents the result using 
option prices with the upper epsilon threshold of 0.9 for the one-month horizon and 0.8 for 
maturities beyond one month. Column B shows the result of an expanded sample. We obtain 
more granular option prices at each epsilon interval of 0.025 through interpolating the implied 
volatility surface. We then calibrate the upper epsilon threshold at each maturity such that a 
Brownian diffusion process with monthly volatility of 0.035 (annualized volatility of 12%) 
breaches the thresholds with only a small chance (less than 1%). This procedure results in an 
epsilon cutoff of 0.9 for options of one-month maturity and decreases for each 0.025 step down 
in epsilon, and the epsilon cutoff at the 6-month horizon is 0.80. 
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Table 6 

Stability over Different Samples of Estimated Coefficients in Regressions for Put-Options Prices  

Coefficient 1994.08-2003.01 2003.02-2008.02 2008.03-2013.03 2013.04-2018.06 p-value 
 U.S. (SPX)  

𝜷𝑻 0.998 1.203 0.920 1.303 0.000 
(.043) (.048) (.042) (.057)  

𝜷𝝐 5.12 6.30 4.00 5.63 0.000 

(.47) (.59) (.48) (.66)  
𝜶∗ െ 𝜶 10.65 6.03 4.92 5.06 0.055 

(8.46) (3.92) (3.15) (3.29)  
𝜼𝟐𝒒 0.098 0.080 0.090 0.072 0.000 

(.062) (.015) (.017) (.015)  
 All (seven stock-market indices)  

𝜷𝑻 0.949 1.117 0.911 1.148 0.000 

(.046) (.047) (.041) (.042)  
𝜷𝝐 4.67 6.05 3.66 5.74 0.000 

(.57) (.57) (.44) (.60)  

𝜶∗ െ 𝜶 9.26 6.06 5.44 7.31 0.000 

(8.04) (4.32) (2.69) (4.34)  
𝜼𝟐𝒒 0.111 0.085 0.100 0.077 0.000 

(.059) (.017) (.016) (.020)  
 

Note:   The estimated coefficients shown for four sub-periods correspond to those shown for full samples in Table 1.  The sub-periods 
were chosen to have roughly equal numbers of observations, starting from January 1998, by which the data are available for five of the 
seven stock-market indices considered in Table 1.  The results apply to the U.S. (SPX) stock-market index and for the pooled sample 
of all seven stock-market indices.  The p-values are for the hypothesis that the associated coefficient is the same across the four sub-
periods. The p-value for the joint hypothesis that all coefficients are equal across the sub-periods has a p-value of 0.000 for the U.S. 
SPX and for the pooled sample of all seven stock-market indices. 
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Addendum: 

Disaster probability estimates from S&P 500 put options (updated March 2020) 

 

 


